Group Project Experience for Computational Fluid Dynamics MSc students
04/06/2020

Our CFD MSc students have successfully presented and submitted their Group Projects. When the students started their GP’s in February, no-one anticipated the exceptional circumstances involving COVID-19. During the past few weeks several students had moved back to their countries, they faced unprecedented circumstances including lockdown, but they were all very determined. Cranfield University provided every possible facility to the students returning to their homes, and to the students who stayed on campus, so that they could successfully complete.
Our Group Project creates a virtual consultancy environment by bringing together students from various backgrounds to solve an industrial problem. Each group of students work together on a different thematic project, related to a fluid problem encounter in industry. There are three themes: aerospace, automotive and energy.
Presentations were held online, students globally from Mexico to Croatia joined and each group presented their work to the examiners on time and to exceptional quality. Here are a couple of examples of the brilliant efforts put in by our students – well done to the CFD MSc class of 2019/2020!

Design and CFD Analysis of Camber Morphing Airfoils in Transonic Regime, Jesus Miguel Sanchez Gil
It has been a stimulating journey where I could learn more in depth about Compressible Simulators and apply it to this concept of the morphing airfoil. These results for optimal design would not have been possible without the collaboration of my team colleagues who have demonstrated great motivation and enthusiasm throughout the course of the project. We aim to publish this project in a scientific article.”
Study of Cavitating Flow Behind a Bluff Body, Jason Ong
I am delighted to showcase some of the research that myself and my colleagues have been working on over the past few months. This animation shows the alternating jet formation that causes cavitating vortex streets as documented by Arpad Fay in 1967.
The animation on the left side depicts the density field that characterises the bubble formation since the void fraction is a function of the liquid density, while the one of the right shows the streamline visualisation of the vortex structures generated. The re-entrant jet causes cavity breakoff on a periodic basis as it slides under cavity zones in a direction that is opposite to that of the localised flow field.

Find out more about Computational Fluid Dynamics MSc course
Categories & Tags:
Leave a comment on this post:
You might also like…
From nature walks to neural networks: My journey in Applied AI at Cranfield
Hi, I’m Ebru K and choosing a postgraduate degree is about more than just picking a subject; it’s about choosing where your future begins. As an international student from Turkey, I ...
Leading With Heart: My Journey as Cranfield Student Association President by Summer Yan
When I first arrived at Cranfield, I had no idea that one year later I would be standing at the heart of our student community, serving as President of the Cranfield Student Association (CSA). ...
Creating and using constituent lists in Datastream
Whether you're analysing industry performance, or comparing company financials, Datastream is a powerful tool. One of its most useful features is the ability to work with constituent lists — collections of companies grouped by index, ...
Landing at Cranfield: First-term experiences and life beyond the classroom
Starting a postgraduate course can feel daunting, especially if you’re new to the aviation industry. In this blog series, Adit Shah shares his journey on the Air Transport Management MSc at Cranfield. From first-term ...
Accelerating ambition: How Amelie Rohan engineered her future at Cranfield
In the world of high-performance automotive engineering, the gap between being a “fan” and being a professional is measured in more than just miles. It is measured in technical precision, hands-on ...
Study better and smarter in 2026
Happy new year! Now is the perfect time to reflect on your studies so far, thinking about what you’re doing well and where you need to focus a bit more attention. Getting back into ‘study ...

