Going off-grid in Jordan – treating wastewater with solar power
25/07/2016

I am studying both the environmental impact and financial cost of an integrated wastewater treatment and renewable energy system for rural and remote locations in Jordan.
In most developing countries, such as Jordan in the Middle East, the availability of sewage treatment in rural or remote locations is scarce. Sewage is usually collected in a septic tank or pit latrines and the lack of an appropriate treatment is a concern for public health. The difficulty for remote and rural locations is that the treatment needs to be off-the-grid since most sewage processes require electricity, and access to the grid in this kind of location is limited.
However, Jordan is a country which receives a large amount of solar radiation and a rural electrification programme has been implemented through the use of solar photovoltaic panels (using solar cells to convert energy from the sun into a flow of electrons). Due to this positive expansion of solar energy in Jordan, my research will consider the potential of integrating a wastewater treatment plant with solar energy as a source of electricity for its operation.
The most novel aspect of my project is the integration of an off-grid wastewater process with renewable energy, in this case a photovoltaic system. Most previous research usually bases the selection of the wastewater treatment process on the technical performance and the cost. So I am also studying how each wastewater process affects the environment; this is through the use of life-cycle assessment (LCA) as a tool for decision-making in the selection of a sustainable process.
LCA is a methodology for assessing the environmental aspects and potential impact associated with the product / process during the whole of its life cycle; so from a ‘cradle-to-grave’ perspective.
In my study, the LCA is based on the results obtained from an initial design phase, in which I designed four wastewater treatment options (extended aeration; oxidation ditches; trickling filter; and constructed wetland). The process design is based on mass and energy balances (used widely in environmental analyses), and the photovoltaic system design on the electrical requirements for each process.
My research will directly benefit the population in Jordan’s rural and remote locations as this system is actually going to be installed in these places, in the future. It will also secure water resources and the environment because the effluent will be used for crop irrigation in the surrounding areas.
This project has already given me the opportunity to improve my knowledge of process design, to learn about solar energy and evaluate the suitability of an integrated system. The implementation of LCA, through the use of the computer software, will be useful in my future career.
One of the best things about undertaking my individual research project at Cranfield is that it is part of a project between the University, Arava Institute (Israel), Palestinian Wastewater Engineering Group and i.GREENs (Jordan), funded by the British Council’s Newton Fund. This has given me a first-hand view of how other organisations work. In addition, I have also improved vital skills such as time management, communication skills and problem solving.
Annastesia Salleh, MSc in Water and Wastewater Engineering
Categories & Tags:
Leave a comment on this post:
You might also like…
A Commonwealth Scholar’s path in environmental engineering
My personal motto is: Engineering for everyone, communities thrive when women build. It’s a reminder of why I chose this path and why I’m committed to making space for more women in engineering ...
Search tips for using our online resources effectively
When you begin to search the literature for relevant, good quality academic material, it can feel daunting and, at times, overwhelming. However, it need not be like that. Here are a few ...
From theory to leading the way: Simrat Singh’s robotics journey
Simrat Singh, an Indian national, came to the UK to pursue an MSc in Robotics at Cranfield University. Now, he’s a Lead Robotics and AI Engineer at Swift Robotics, applying everything ...
Referencing the use of generative AI in your work
We recognise that Artificial Intelligence (AI) has, and will increasingly, become a part of our everyday lives and that we need to adapt to it. Hopefully you will have already seen the guidance for staff ...
Lillian’s student journey into advanced materials and space exploration
I want to be an astronaut! I know how farfetched that might sound but it’s been my dream since I was 8 years old. I have always been fascinated by how materials are engineered ...
From Kenya to Cranfield: Building the future of responsible AI
The world of technology is moving at an unprecedented pace. Cranfield University is at the forefront of new technology and builds strong links with global companies, giving our graduates the skills ...

This is very informative 🙂 Please keep posting more. It really helps!
Membrane bioreactor (MBR) is the combination of a membrane process like microfiltration or ultrafiltration with a biological wastewater treatment process..It is possible to operate MBR processes at higher mixed liquor suspended solids (MLSS) concentrations compared to conventional settlement separation systems, thus reducing the reactor volume to achieve the same loading rate.When used with domestic wastewater, MBR processes can produce effluent of high quality enough to be discharged to coastal, surface or brackish waterways or to be reclaimed for urban irrigation. Other advantages of MBRs over conventional processes include small footprint, easy retrofit and upgrade of old wastewater treatment plants.