‘Drones for Good’: Remotely Piloted Aircraft Systems (RPAS) helping investigators gather evidence and prevent future accidents
01/04/2016
Photo: DJI S1000 “Octocopter” Drone scans a demo accident site outside Martell House, Cranfield University
Accident sites are often dangerous or difficult places to work. There are always hazards that will require the accident investigator to expose themselves to risk. These take many forms – environmental, physical, material, biological, psychological – which will need to be addressed, as the investigator needs to collect as much evidence (particularly perishable evidence which might be washed away, blown away or destroyed) as quickly as possible.
During this initial risk assessment the RPAS cameras (video/stills/thermal/Infrared) are capturing this evidence. This imagery will then be used in real time to assist with communicating the situation to other agencies. This helps confirm the extent of the accident site or even control access, if required.
RPAS allows the investigator to conduct a dynamic risk assessment from a distance whilst also capturing the evidence required with video and stills. Previously helicopters or fixed wing aircraft might have been chartered to provide this service. This is expensive and not always practical.
Based upon the utility outlined above RPAS technology is currently being used by state level investigation agencies including UK Air Accidents Investigation Branch (AAIB) and the UK Rail Accident Investigation Branch (RAIB).
This technology is improving week by week, and some of the best results are being achieved with some of the smallest and most readily available systems.
A key point to the success of their deployment is that they are operated legally and safely by professionals who understand the airspace in which they might operate, but also the hazards present at the accident.
Cranfield University is leading the way in this field. At the Safety and Accident Investigation Centre we continue to test theories and push investigative/research boundaries on the accident site. Flying a range of drones, with a wide array of sensors, we aim to enhance current accident investigation techniques. But more than this we aim to revolutionise how evidence is gathered, analysed and then promulgated to the public and wider safety community.
An example of this is our work with 3D models. We are pioneering new 3D modelling techniques in order to provide accurate, measurable 3D models of accident sites (using the video and stills captured for evidence collection, then applying photogrammetry techniques to convert these images to 3 D models). These can then be used for investigative analysis, and as graphic representation in final accident reports.
This is a hugely exciting area of research, which utilises new and innovative drone technology and gives us an advantage when investigating serious accidents and incidents. Constantly looking to the future, our aim is to continue to be the centre of excellence with regard to this novel and innovative approach.
Categories & Tags:
Leave a comment on this post:
You might also like…
We need a million engineers who understand accessibility
…and we are, mostly, starting from zero. This arresting, attention-grabbing line was said to me only last month, in a busy London canteen. Who said it, where we were, are and what they said - ...
Cranfield apprentices named among sustainability’s brightest rising stars
Two Cranfield University apprentices have been recognised for their drive, determination and potential to lead the UK towards a more sustainable future. Julia Anukam and Lucie Rowley feature in the prestigious edie 30 Under ...
A Global Perspective: My Cranfield experience in air transport management
Hello, I’m Sudheshna Satya Prakash, an Indian student studying an MSc in Air Transport Management. After meeting Dame Karen Holford, the Chief Executive and Vice-Chancellor of Cranfield in India, my family ...
A Colombian in Cranfield: My journey through aerospace materials
Hi everyone! I’m Mateo Duarte Garcia, an international student from Colombia who recently completed the MSc in Aerospace Materials programme at Cranfield University. Cranfield has been a dream of mine since ...
Researching a market or industry?
We've been running some lunchtime sessions recently on researching markets and industries. Here's a quick a recap for those who took part or a brief introduction for anyone who missed the session. If you need ...
Autonomous Vehicle Dynamics and Control (AVDC) MSc alumnus Johannes Autenrieb on his exciting career in aerospace
Johannes Autenrieb is a Research Scientist at the German Aerospace Center (DLR). He graduated from Cranfield University with an MSc in Autonomous Vehicle Dynamics and Control (AVDC). Here, Johannes reflects upon ...
I would imagine that quadcopters are the drones of choice for use in these situations. What about fixed wing systems?