Artificial Intelligence and Machine Learning Benefits? Is there any Evidence?
27/01/2020

The world is awash with AI and ML programmes and projects – and marketing hype!
There is clearly a place for such applications – we heard recently about AI (actually it’s good old sophisticated image-recognition) beating experienced doctors in identifying breast cancer, we’ve heard about its use in some automated driving situations, etc.
However, although many organisations are developing and deploying these applications, it appears the world has yet to see any hard evidence that they are delivering benefits to stakeholders (apart from the developers and suppliers of such systems) either in terms of cost-savings/avoidance or increasing effectiveness / income.
There is overwhelming material out there about what they can deliver in the future – but not a lot on what has been delivered so far.
Our evidence for the lack of evidence comes from our own observations, as well as Dominic Cummings’ recent blogvert where he refers to a paper by Makridakis, Spiliotis and Assimakopoulos.

Some golden nuggets:
- “These studies contributed to establishing two major changes in the attitudes towards forecasting: First, it was established that methods or models, that best fitted available data, did not necessarily result in more accurate post sample predictions (a common belief until then)”
- “Second, the post-sample predictions of simple statistical methods were found to be at least as accurate as the sophisticated ones. This finding was furiously objected to by theoretical statisticians …”
- “A problem with the academic ML forecasting literature is that the majority of published studies provide forecasts and claim satisfactory accuracies without comparing them with simple statistical methods or even naive benchmarks. Doing so raises expectations that ML methods provide accurate predictions, but without any empirical proof that this is the case.”
· “In addition to empirical testing, research work is needed to help users understand how the forecasts of ML methods are generated (this is the same problem with all AI models whose output cannot be explained). Obtaining numbers from a black box is not acceptable to practitioners who need to know how forecasts arise and how they can be influenced or adjusted to arrive at workable predictions.”
- “A final, equally important concern is that in addition to point forecasts, ML methods must also be capable of specifying the uncertainty around them, or alternatively providing confidence intervals. At present, the issue of uncertainty has not been included in the research agenda of the ML field, leaving a huge vacuum that must be filled as estimating the uncertainty in future predictions is as important as the forecasts themselves.”
Work by Genevera Allen, Associate Professor at the Rice University in Houston, Texas also questions the lack of evidence – and, more importantly, the apparent lack of interest in even attempting to collect this evidence!

Some golden nuggets:
- ” … scientists must keep questioning the accuracy and reproducibility of scientific discoveries made by machine-learning techniques until researchers develop new computational systems that can critique themselves.”
- “The question is, ‘Can we really trust the discoveries that are currently being made using machine-learning techniques applied to large data sets?'” Allen said. “The answer in many situations is probably, ‘Not without checking,’ ….”
- “A lot of these techniques are designed to always make a prediction, they never come back with ‘I don’t know,’ or ‘I didn’t discover anything,’ because they aren’t made to.”
- “But there are cases where discoveries aren’t reproducible; the clusters discovered in one study are completely different than the clusters found in another,” she said. “Why? Because most machine-learning techniques today always say, ‘I found a group.’ Sometimes, it would be far more useful if they said, ‘I think some of these are really grouped together, but I’m uncertain about these others.'”
When we blogged about Matthew Syed’s “Black Box Thinking” in 2016, if you don’t have a properly constructed “closed loop” (in an engineering sense, and “open loop” in the Syed sense) learning system when experimenting with new applications, then we have no idea if we’ve actually improved things!
So, like Dilbert, you may want to be wary about where and how you apply AI and ML! And don’t start with the coffee machine!
Categories & Tags:
Leave a comment on this post:
You might also like…
Bank holiday hours for Library Services: Monday 26 May
Library Services staff will be taking a break on Monday 26 May for the early May bank holiday. You will still be able to access all the resources and help you need via our library website. ...
Want to know more about research methods?
Research methods are the strategies and tools used to gather, analyse and interpret data or evidence to uncover new information or create better understanding of a topic. Research methodology is the theory, justification and assumptions ...
How do I cite…. items with multiple authors in APA7?
This post follows on from our post on using 'et al' in citations but has a slightly different focus - do read them both! As you may know, in-text citations can be written either as ...
The British Library Business and IP Centre
Did you know that the Business and IP Centre at the British Library, on the Euston Road in London, has a variety of events and resources to support entrepreneurs and small businesses? If you register ...
Getting started on your Master’s thesis
Please note: This post is intended to provide advice to all students undertaking a thesis in the Faculty of Engineering and Applied Sciences. There is separate advice for School of Management students. Choosing your thesis ...
A key strength of the Management MSc: Thesis-linked Internships for all students
What drew me to Cranfield was not just its reputation, but the practical, real-world approach embedded in the curriculum. The course offers the chance to work on live case studies with companies and even ...