Artificial Intelligence and Machine Learning Benefits? Is there any Evidence?
27/01/2020

The world is awash with AI and ML programmes and projects – and marketing hype!
There is clearly a place for such applications – we heard recently about AI (actually it’s good old sophisticated image-recognition) beating experienced doctors in identifying breast cancer, we’ve heard about its use in some automated driving situations, etc.
However, although many organisations are developing and deploying these applications, it appears the world has yet to see any hard evidence that they are delivering benefits to stakeholders (apart from the developers and suppliers of such systems) either in terms of cost-savings/avoidance or increasing effectiveness / income.
There is overwhelming material out there about what they can deliver in the future – but not a lot on what has been delivered so far.
Our evidence for the lack of evidence comes from our own observations, as well as Dominic Cummings’ recent blogvert where he refers to a paper by Makridakis, Spiliotis and Assimakopoulos.

Some golden nuggets:
- “These studies contributed to establishing two major changes in the attitudes towards forecasting: First, it was established that methods or models, that best fitted available data, did not necessarily result in more accurate post sample predictions (a common belief until then)”
- “Second, the post-sample predictions of simple statistical methods were found to be at least as accurate as the sophisticated ones. This finding was furiously objected to by theoretical statisticians …”
- “A problem with the academic ML forecasting literature is that the majority of published studies provide forecasts and claim satisfactory accuracies without comparing them with simple statistical methods or even naive benchmarks. Doing so raises expectations that ML methods provide accurate predictions, but without any empirical proof that this is the case.”
· “In addition to empirical testing, research work is needed to help users understand how the forecasts of ML methods are generated (this is the same problem with all AI models whose output cannot be explained). Obtaining numbers from a black box is not acceptable to practitioners who need to know how forecasts arise and how they can be influenced or adjusted to arrive at workable predictions.”
- “A final, equally important concern is that in addition to point forecasts, ML methods must also be capable of specifying the uncertainty around them, or alternatively providing confidence intervals. At present, the issue of uncertainty has not been included in the research agenda of the ML field, leaving a huge vacuum that must be filled as estimating the uncertainty in future predictions is as important as the forecasts themselves.”
Work by Genevera Allen, Associate Professor at the Rice University in Houston, Texas also questions the lack of evidence – and, more importantly, the apparent lack of interest in even attempting to collect this evidence!

Some golden nuggets:
- ” … scientists must keep questioning the accuracy and reproducibility of scientific discoveries made by machine-learning techniques until researchers develop new computational systems that can critique themselves.”
- “The question is, ‘Can we really trust the discoveries that are currently being made using machine-learning techniques applied to large data sets?'” Allen said. “The answer in many situations is probably, ‘Not without checking,’ ….”
- “A lot of these techniques are designed to always make a prediction, they never come back with ‘I don’t know,’ or ‘I didn’t discover anything,’ because they aren’t made to.”
- “But there are cases where discoveries aren’t reproducible; the clusters discovered in one study are completely different than the clusters found in another,” she said. “Why? Because most machine-learning techniques today always say, ‘I found a group.’ Sometimes, it would be far more useful if they said, ‘I think some of these are really grouped together, but I’m uncertain about these others.'”
When we blogged about Matthew Syed’s “Black Box Thinking” in 2016, if you don’t have a properly constructed “closed loop” (in an engineering sense, and “open loop” in the Syed sense) learning system when experimenting with new applications, then we have no idea if we’ve actually improved things!
So, like Dilbert, you may want to be wary about where and how you apply AI and ML! And don’t start with the coffee machine!
Categories & Tags:
Leave a comment on this post:
You might also like…
World Soil Day 2023, 5 December – showcasing the Cranfield University Soilscapes Viewer tool
UN World Soil Day on 5 December is a vital reminder of the importance of soil in all our lives. Supporting growth of the food we eat; cleaning the water we drink; supporting the foundations ...
Collect your reservations 24/7 from the SOM Library locker
SOM Library customers, did you know that you can reserve items on Library Search and then pick them up at any time of the day or night from our SOM Library locker using your University ...
How do I reference journal articles… in the NLM style?
References for journal articles are one of the most used reference types for postgraduate research as these sources are frequently used in assignments. In the NLM Numbered Referencing Guide they are listed under periodicals. Periodicals ...
Royal Air Force Officer Kathy: Why I chose to study Safety and Human Factors in Aviation MSc
Growing up in Southampton with her father, an Air Cadet Instructor, Kathy had an interest in aviation from an early age and was committed to join the Royal Air Force from the age of ...
My journey since completing my Counterterrorism MSc
Richard Robinson, a Chevening Scholar, completed his course in Counterterrorism MSc in the Summer of 2023. After traveling to Cranfield from Montego Bay, Jamaica, Richard was the Head of School for the Caribbean Special ...
Net zero in asset management: The concept and the challenge
The concept of net zero has emerged as a key solution in addressing the pressing global challenges of climate change and environmental sustainability. Industries across various sectors increasingly recognise the need to reduce their ...